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ABSTRACT: We introduce a natural set of asymptotic conditions in the spacelike stretched
AdS sector of topologically massive gravity. The Poisson bracket algebra of the canonical
generators is shown to have the form of the semi-direct sum of a u(1) Kac-Moody and
a Virasoro algebra, with central charges. Using the Sugawara construction, we prove
that the asymptotic symmetry coincides with the conformal symmetry, described by two
independent Virasoro algebras with central charges. The result is in complete agreement
with the hypothesis made in [6].
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1 Introduction

Topologically massive gravity with a cosmological constant A, denoted shortly as TMGy,

is an extension of three-dimensional general relativity with a cosmological constant (GRy)

by a gravitational Chern-Simons term [1]. While GR, is a topological theory, TMGy is

a dynamical theory with one propagating mode, the massive graviton. In the AdS sector

(with A < 0), TMG, contains a maximally symmetric vacuum solution, known as AdSs,

and the related BTZ black hole [2], with interesting thermodynamic properties. Thus,

TMG, seems to be a useful model for exploring dynamical properties of the gravitational

dynamics. However, the interpretation of TMGy for generic values of the Chern-Simons

coupling constant suffers from serious difficulties: for the usual sign of the gravitational



coupling constant, G > 0, massive excitations about AdSs carry negative energy [1], while
G < 0 leads to the negative energy of the BTZ black hole [3].

In order to resolve this inconsistency, Li et. al. [3] introduced the so-called chiral ver-
sion of the theory, defined by a specific relation between the coupling constants, and argued
that it might lead to a consistent theory at both classical and quantum level [3, 4]. Here,
we follow another idea, related to the fact that TMG, has a rather rich vacuum struc-
ture [5, 6]. Since the AdS sector of TMG, around AdSs is not consistent, Anninos et
al. [6] proposed to choose a new vacuum, the so-called spacelike stretched AdSs, which
could be a stable ground state of the theory [7]. This choice reduces the isometry group
SL(2, R) x SL(2, R) of AdS3 to its four parameter subgroup U(1) x SL(2, R). Exploring
thermodynamic properties of the spacelike stretched black hole, Anninos et al. [6] were led
to a hypothesis that the corresponding boundary dynamics is described by a holographically
dual two-dimensional conformal field theory (as in the standard AdSs case). Recently, an
extension of the above hypothesis to the dS sector was discussed in [8].

As a natural step toward verification of the above hypothesis, Compere et al. [9] (see
also [10]) investigated asymptotic symmetries in the spacelike stretched AdSs sector. They
found a structure isomorphic to the semi-direct sum of the u(1) Kac-Moody algebra and the
Virasoro algebra, u(1)xa @sq V, with a central extension. The result looks quite natural,
but the validity of the hypothesis still remains an open issue.

In this paper, we also examine the correctness of the hypothesis formulated in [6]. Since
we are convinced that the asymptotic structure of a dynamical system is most clearly seen
in the canonical formalism, our approach is based on Dirac’s constraint Hamiltonian formal-
ism, in a form applied recently to TMGp [11]. After formulating a set of natural asymptotic
conditions that generalize the usual AdS conditions [12], we find that the asymptotic sym-
metry of the spacelike stretched AdS sector of TMGy, is indeed a two-dimensional conformal
symmetry with central charges, in complete agreement with the hypothesis of [6].

The paper is organized as follows. In section 2 we give a brief overview of the basic
dynamical features of TMG, in the first-order Lagrangian formalism and discuss the form
of the spacelike stretched black hole solution. Then, in section 3, we formulate the concept
of asymptotically warped AdS configuration, derive the asymptotic conditions in the space-
like stretched sector, and find the form of the corresponding asymptotic parameters. The
asymptotic commutator algebra is found to be u(1)gns @sq V' without central charges. In
section 4, we study the canonical realization of the asymptotic symmetry by constructing
the Poisson bracket algebra of the improved canonical generators. It turns out that it has
the form w(1)gar @sq V' with central charges. This algebra is essentially of the same form
as the one found in [9, 10]. In section 5, we derive the main result of this paper: using the
Sugawara construction [13] in the u(1)gy sector, we find that the asymptotic symmetry
can be written in the form of two independent Virasoro algebras with central charges, the
values of which coincide with those conjectured in [6]. Section 6 is devoted to concluding
remarks, while appendices contain some technical details.

Our conventions are given by the following rules: the Latin indices refer to the local
Lorentz frame, the Greek indices refer to the coordinate frame; the middle alphabet letters
(4,4, ky...;pu vy A, ...) run over 0,1,2, the first letters of the Greek alphabet («, 3,7, ...) run



over 1,2; the metric components in the local Lorentz frame are 7;; = (+, —, —); totally anti-

symmetric tensor 7% and the related tensor density e*? are both normalized as €912 = 1.

2 Spacelike stretched black holes

Topologically massive gravity with a cosmological constant is formulated as a gravitational
theory in Riemannian spacetime. Instead of using the standard Riemannian formalism,
with an action defined in terms of the metric, with find it more convenient to work in the
first-order formalism, with the triad field and spin connection as fundamental dynamical
variables. Such an approach can be naturally described in the framework of Poincaré
gauge theory [14], where basic gravitational variables are the triad field b* and the Lorentz
connection A% = —AJ% (1-forms), and the corresponding field strengths are the torsion T°
and the curvature R (2-forms). Using the notation A% =: —¥,w* and RY =: —c¥ RF,
we have: T = V' := db* + aijkwjbk and R = dw' + % aijkijk (the wedge product sign is
omitted for simplicity).

The antisymmetry of A% ensures that the underlying geometric structure corresponds
to Riemann-Cartan geometry, in which b’ is an orthonormal coframe, g := m-jbi @b is the
metric of spacetime, w' is the Cartan connection, and 7%, R? are the torsion and the Cartan
curvature, respectively. For T; = 0, this geometry reduces to Riemannian.

2.1 Lagrangian and the field equations
The Lagrangian of TMG, is defined by

. A o .
L =2ab'R; — 3 i VO + ap ™ Leg(w) + AT, (2.1)

where a = 1/167G, Los(w) = widw; + 1&;;5w'wiwk is the Chern-Simons Lagrangian for the
Lorentz connection, and A' (1-form) is the Lagrange multiplier that ensures 7; = 0. We
assume that G' > 0, while the values of p are generic. By construction, TMG, is invariant
under the local Poincaré transformations:

Sob’y = —e' b W08 — (9,8°)b, — EPOLY

dow'y = =V 0" — (0,8°)w’p — EPOpW" 1

SoN'y = —& p N 08 — (9,8°)N, — EPOLN' . (2.2)
i

By varying the action I = [ L with respect to b’,w’ and \’, one obtains the grav-

itational field equations. Using the third equation 7; = 0, which ensures that w’ is the
Riemannian (Levi-Civita) connection, the first two equations can be written as

2aR; — Aeijpb/ b +2ap~1C; = 0, (2.3a)
1
A = 2ap" Ly b Ly = (Ric),,, — annR. (2.3b)
Here, C; := V(L;xb*) is the Cotton 2-form, (Ric),,, = —ekl Rign and R = —eiijijk.

The expansion in the basis ¢, = %%mnbmb", given by R; = GF;éi, C; = CF;ér, yields the
standard component form of the first equation:

aGij — A??ij + au_lCij =0,

where Gj; is the Einstein tensor, and Cj; = ;"""V,,, L,; the Cotton tensor.



2.2 Construction of spacelike stretched black holes

The spacelike stretched black hole [5, 6] is a particular solution of TMG, with several
attractive features: it is a discrete quotient of the spacelike stretched AdSs vacuum (A.1),
both solutions have the same type of asymptotic behaviour, and the corresponding black
hole thermodynamics [15] seems to support the hypothesis made in [6], which “predicts”
the existence of an asymptotic conformal symmetry in this sector of TMG,.

Using the results described in appendix A, we are now going to construct the spacelike
stretched black hole in our first-order formalism. After introducing a convenient notation,

o«

A:—€—2, 14 3,

we start from the spacelike stretched AdSs solution (A.1), use the coordinate transforma-
tions (A.3) and find the form of the spacelike stretched black hole metric in Schwarzschild-
like coordinates z# = (t,r, ¢):

ds? = N?dt* — B~?dr* — K*(dp + N,dt)?, (2.4)
where
N2 (V2 +3)r—r)(r—r_) 7 B2 AN?K? 7
4K? 02
K? = Z [3(1/2 —Dr 4+ P2 +3)(ry +r) —dvryr_ (V2 + 3)} ,
2ur — \Jryr_ (V2 +3)
N, = e .

The metric of the spacelike stretched black hole (2.4) is defined for v? > 1.
Going over to the first-order formalism, we choose the triad field to have the simple
diagonal form:
W' =Ndt, b'=———dr, b =K(dp+ Nydt). (2.5a)

The connection w’ is determined by the condition of vanishing torsion, dbi—l—aijkwj b =0:

WO =0 =%, wl=-pb, W= —ab” + B, (2.5b)
where
__ 2KN' e K'QN;J _ 2NK'
@i=—, =—"t, =T

In the coordinate basis, we have:

Nv 2NKK' KN/
0_ _ 1_ P
w = A dt — dy, w SN dr,
wr=— /’th+ 7 Ldp.



Finally, the solution for A, takes the form:

. 3 .
o = 2ap~t [((ch)oo — 2—€2> b0+ (ch)ong] ,

_ . 3
A = 2ap~t <(ch)11 + ﬁ) bt

Ay = 2ap~t [(Ric)gobo - ((Ric)gg + %) b2] , (2.5¢)

where the Ricci tensor (Ric);; is calculated in appendix B. Equations (2.5) define the
spacelike stretched black hole in the first-order formalism.

3 Asymptotic conditions

In this section, we use a natural technique, known from earlier studies of the AdS sector [12],
to introduce asymptotic conditions in the sector containing the spacelike stretched AdSs,
then we analyze the corresponding restrictions on the gauge parameters and calculate the
form of the commutator algebra.

3.1 Spacelike stretched AdS asymptotics

Let us introduce the concept of warped AdS asymptotic behavior, based on the following
requirements:

(a) asymptotic configurations should include warped black hole geometries;

(b) they should be invariant under the action of U(1) x SL(2, R), the isometry group of
warped AdSs;

(c) asymptotic symmetries should have well-defined canonical generators.

Here, we apply this general concept to the case of spacelike stretched AdS asymptotics.
The requirement (a) means that asymptotic conditions should be chosen so as to
include the spacelike stretched black hole configuration, defined by (2.5).
In order to realize the requirement (b), we first consider the spacelike stretched black
hole metric (2.4). For large r, this metric can be written in the form g,, = gu + éuw
where g,,, is the leading-order term (the black hole vacuum, defined by r_ = r = 0),

1 0 vr
52
50— 0 ——— 0
g/.tl/ (V2 +3)7a2 ;
3
vr 0 Z( 2 1)7“2

and G uv represents the sub-leading terms. Let us now act on g, with all possible isometries
of the spacelike warped AdSs, defined by the four Killing vectors x = (5(2),5(1),5(2), 5(0)),
displayed in appendix A. The result of this procedure has the form

0 Oy Oy
Okguw = | O2 O3 O1 |,
Oy O O_4



where O, is a quantity that tends to zero as 1/r" or faster when r — oo. In order to have a
set of asymptotic configurations which is sufficiently large to include the whole family of the
metric configurations g, + dx g, as required by (b), we adopt the following asymptotic
form of the metric:

01 Oy Oy
Guv = L(_],ul/ + G,uz/ 5 G,uz/ = 02 03 01 . (3.1)
Oy O O_4

Comparing this result with [10], we find a complete agreement.

To simplify further discussion, we will use the notation ¢ := ¢(r_ = r, = 0) for the
leading-order term of any dynamical variable ¢, which is a natural extension of the notation
used for the metric.

Although metric is not a dynamical variable in our first order formalism, its asymptotic
form can be used to “derive” asymptotic behaviour of the triad field. Indeed, by combin-
ing (2.5a) and (3.1), we are led to adopt the following asymptotic form of the triad field:

01 Oy Oy
b,=b,+B,,  B,=|0,0,0|. (3.2a)
01 Oy Oy
Similarly, we combine (3.2a) with (2.5b) to find
01 Oy Oy
wiu = (Diu + Qi;m Qiu = | Oy Oy O . (3.2b)
01 Oy Oy
Finally, by combining (3.2a) with (2.5¢), we obtain:
01 Oy Oy
Ny=X,+4,, A, =000 |. (3.2¢)
01 Oy Oy

One should note that the asymptotic conditions are not uniquely determined by the
requirements (a) and (b). In the above procedure, we were looking for the most general
asymptotic behaviour compatible with (a) and (b), with arbitrary higher-order terms.
Later, when we consider the condition (c), certain relations among the higher-order terms
will be established (in appendix C).

By construction, the adopted asymptotic conditions are invariant under the action of
the isometry group U(1) x SL(2, R) of the spacelike warped AdSs. Now, we wish to clarify
the symmetry structure of the field configurations (3.2).

3.2 Asymptotic parameters

Having chosen the asymptotic conditions (3.2), we are now going to find the subset of
gauge transformations (2.2) that leave these conditions invariant. More precisely, acting on
the fields (3.2), these restricted (or asymptotic) gauge transformations are, by definition,



allowed to change only the (arbitrary) higher-order terms. Consequently, the restricted
gauge parameters are defined by the relations

— &b 08 — (9,P)b, — €PDLY, = GoB,,
—(Buéi + 8ijl’f‘*’ju‘gk) - (3u§p)wip - §papwiu = 509iu7
— N 08 — (0,E°)NT, — €PN, = G A,

By solving these equations, we find the asymptotic parameters for local translations,

0 =T (p) + Oy, = —1rdyS(p) + Oy,
& =S(p)+ 02, (3.3)

and for local Lorentz rotations:

2
90 = — 92S(p) + O,
V3 +3) (R — ) (0) + O

20\ V2 +

3
o' = m82T(<P) + O3,
4 1
6 — tv La25(¢) + 0s. (3.3b)

(2 +3)y/3w2-1)r

These parameters define the symmetry of the (asymptotic) boundary of spacetime, in the
spacelike stretched AdS sector of TMGy.

3.3 Asymptotic symmetry

To find the interpretation of the asymptotic parameters, we calculate the commutator
algebra of the corresponding gauge transformations. To begin with, we observe that com-
mutator algebra of the local Poincaré transformations (2.2) is closed: [0(1), 60(2)] = do[3],
where 6o(1) := 6o(£17,0%) etc, while the composition rule is given by:

& =& - 08l — & - oLy,
Hé = €imn91m03 + & - 5% —& - 09% .

Substituting here the asymptotic parameters (3.3) and comparing the lowest order terms,
we obtain:

T3 = 510215 — S20:11
S3 = 510959 — S90951 . (3.4)

To clarify the meaning of this result, it is useful to define the residual or pure gauge transfor-
mations as the transformations generated by the higher order terms in (3.3). Pure gauge
transformations are known to be irrelevant in the canonical analysis of the asymptotic
structure of spacetime [16]. This fact is made more precise by saying that the asymptotic
symmetry group is defined as the factor group of gauge transformations generated by (3.3),
with respect to the residual gauge transformations. In other words, the asymptotic sym-
metry is defined by the pair (T, .5), ignoring all the residual, higher-order terms.



Now, introducing the Fourier expansion of the parameters and the related notation

ky = 00(T = €™, 5 =0),
by = 60(T = 0,8 =™,

the commutator algebra of the asymptotic transformations takes the form the semi-direct
sum of u(1)ky and the Virasoro algebra,

ikm, ko] =0,
l [km7 gn] - mkm-{—n 5
[l ln] = (M —n)lpin . (3.5)

The same algebra was also found in [9, 10]. Central charges are here absent, but they will
appear in the canonical analysis.

The adopted asymptotic conditions (3.2) are chosen in agreement with the require-
ments (a) and (b), formulated at the beginning of this section, and the related symmetry
structure is encoded in the form of the asymptotic gauge parameters (3.3). The status of
the requirement (c) will be clarified in the canonical analysis of the next section.

4 Canonical realization of the asymptotic symmetry

Asymptotic symmetry of a gauge theory is most clearly understood in the framework of
the canonical formalism. In this section, we apply the results obtained in [11] to study
the canonical aspects of the asymptotic structure of TMG, in the spacelike stretched
AdS sector.

Using the Castellani algorithm [17], we found the following expression for the canonical
gauge generator [11]:

G = -G — Ga,
G, = €° (bipmo 4 )\ippio 4 wipHiO)
+¢7 [biﬂﬂi + Aip,j; + Wip’éi + (8,,()6)7@0 + (8p)‘i0)pi0 + (apin)HiO] )
Gy = 011" + 0 | i — eigp (Vom™ + Mopt + wll™) | (4.1)

Here, the integration symbol [ d3x is omitted for simplicity, the canonical momenta cor-
responding to (biu,wiu,)\iu), are denoted as (m;*,IL;#, p;#), and explicit expressions for
various terms appearing in G are given in appendix D. The action of the gauge generator
G on the fields, defined by dp¢ = {¢, G}, has the form (2.2).

4.1 Surface terms

Since canonical generators act on dynamical variables via the Poisson bracket (PB) oper-
ation, they must have well-defined functional derivatives. When this is not the case, the

problem can be usually solved by adding suitable surface terms [18].



We start by examining the variation of the Lorentz generator Go:

6Gy = 0'0K; + 00 + R
= —2ae"9,(00b;g + 0" dwig) + 00 + R
=001 +R.

Here, O are terms with arbitrarily fast asymptotic decrease, R are regular terms which do
not contain variations of the derivatives of fields, and the final result is a consequence of
the asymptotic conditions (3.2). Since both O; and R terms do not contribute to surface
integrals, it follows that G4 is a well-defined generator.

For G1, we have:
6G1 = & (b y0H; + w'p0K; + N )0T;) + 00 + R
= %9, [fpbip (2a0w;g + 6 Nig)
+EPN )Obig + EPW' ,(2adbig + 2a,u_15wi5)] +00 +R.
Using the adopted asymptotic conditions, we find:

0G] = —0,(E20E% + E26M®) + O1 + R
= —00,(6°6Y + M) + O + R,

where

4a 4a a (2v% +3)
g — 0a3 bO -0 )\O o b2 a2 )\2 v b2
€ [o 3WBT A o\ gwWestA =g 8]

al
MY = _80046 [622(20,&)25 + )\Qﬁ) + 3—]/((,()22(4)25 — wogwog)] . (4.2)
Then, after re-introducing the spatial integration, the improved generator takes the form
G =G+,
27
I = —/ do ((TE' + SM) . (4.3)
0

4.2 Energy and angular momentum

The general relation (4.3) implies:
G’ = G - T, GIE”) = Gl - T

For €9 = 1 and &2 = 1, the values of the surface terms have the meaning of energy and
angular momentum of the system, respectively:

2T 2T
E:/ dp&t, M:/ dp M*. (4.4)
0 0



Let us show that these expressions are finite. Using the adopted asymptotic conditions,
one can express £ and M! as functions of the sub-leading terms (Biﬂ, Qiﬂ, Aiu):

4a v2+3 3
&l = — | se5—= [ Q%+ —A°
3 3(1/2—1)< 2T
3

Sav 202 + 3 B%, 9 9
-7 ——A (@)
+3 3(v2—1) ( v ! > 4a? +On

1
M = —a [322 (2922 + 5/122> + 3%(922 — Q%)(2% + 902)}

3v2—1) |B? 4 1 22 +3
_w _2+_Q22+_A22+V7+902 7a_|_(’)1.
2 vl 3 a 3v

Since the sub-leading terms are either constant or tend to zero in the asymptotic region,
it follows immediately that €' = Op, and consequently, the expression for E in (4.4) is
finite. In order to prove the finiteness of the angular momentum, we need the improved
asymptotic relation (C.3), derived in appendix C. It implies M!' = Og, which completes
the proof of finiteness.

Now, we can calculate energy and angular momentum of the spacelike stretched black
hole (2.4):

(v +3)
24GY
M:—V2+3 [(1/2—1-3)(7“ +r )+ 8(ry +r wrir_(3+1v2) — 2ryr_ (1102 49)
384Gty A e e =

v(v? ? v?
v(” +3) <T+ +ro— %m) - %(“r - 7")2] ) (4.5)

96GY
The result coincides with the ADT charges that can be found in [6] (see also [19]).
Returning now to the beginning of this section, where we introduced the concept of the

1
E = [T+ +r_ — —/ryr_(3+ 1/2)}
v

warped AdS asymptotics, we see that our asymptotic conditions (3.2) are also in agreement
with the last requirement (c).

4.3 Canonical algebra

Now, we wish to find the PB algebra of the improved canonical generators.

After introducing the notation G(1) := G[T1, S1], G(2) := G[T3, S2], we use the main
theorem of [20] to conclude that the PB {G(2),G(1)} of two differentiable generators is
also a differentiable generator. This implies

{G(z), é(1)} — G(3) + Cs), (4.6)

where the parameters of G(3) are defined by the composition rule (3.4), while C(3) is an
unknown field-independent functional, C(3) := C(3)[T1, S1; T2, S2], the central term of the
canonical algebra. The form of C3) can be found using the relation

So(DT(2) = T'(3) + Cgy,

,10,



which is a consequence of {G(2), G (1)} ~ do(1)I'(2). The expression d(1)I'(2) is calculated
using the transformation laws

2a(v? + 3)

1 1 1
SoEL = —SDEL — (9,9)€ =

0T,
2al(50% + 3) .5

SoM! = 2R SYM! — SO M — (L T)EY — ————L03S .
oM (B25)M 2 M (t0,T) 3v(v? + 3) 2
Once we know dp(1)I'(2), we can identify the central term:
2al(v? +3) [*" 2a0(50% +3) [T 5
=— dpTr0T) + ————=+- d . 4.6b
Cs) 3v /0 PTo0T) + 30(12 + 3) /0 P51 (4.6b)
The form of the canonical algebra (4.6) implies that the improved generator is con-
served. Indeed, using the relation G[1,0] = —¢Hy and the composition rule (3.4), we have:
d - 0 ~ 5 5
0 = GO+ {G Hr)
d~ 1~ ~ 0
= —-G—- T 1 ~ —I'[T,5] =
G =2 {GIms1.61,0} ~ 2 TIT 5] =0,

since the parameters 7" and S are time independent. Consequently, we have the conser-
vation of the surface term I', and hence, the conservation of the energy and the angu-
lar momentum.

After expressing the canonical generator in terms of the Fourier modes,

Kn = é(T = e—imp’ S = 0)’ Ln = é(T == 0, S == e—ingo) s

the canonical algebra (4.6) takes a more familiar form:

{ {Kma Kn} = _cl_gmém,—n )

i{Km, Ln} = mKpin,

i {Lum, Ln} = (m — 1) Lysn + Cl—;m‘?‘ém_n, (4.7a)
where ( ) y ( ) y
ve+3 S5v° + 3
_ _ iy o)l 4.7h
K Gr VT G 13) (4.7b)

Thus, the canonical realization of the asymptotic symmetry is given as the semi-direct sum
of u(1)km and the Virasoro algebra, with central charges cx and cy .
The authors of [9, 10] found an asymptotic algebra which is essentially the same as

ours, up to some minor differences in conventions.

5 Sugawara construction

Clearly, the asymptotic algebra (4.7) does not describe the conformal symmetry, as conjec-
tured in [6]. However, there is a particular construction due to Sugawara [13], which reveals
how the conformal algebra can be reconstructed on the basis of (4.7). In this procedure,
the presence of central charges is of essential importance.

— 11 —



In the first step, we introduce the set of generators
- 6
L, = - Z K Kp_,, (5.1a)
T

which obey the following PB relations:

Next, we introduce
Lz =1Ly Ly, (5.1b)
whereupon (4.7) takes the form of a direct sum of u(1)ky and the Virasoro algebra:

CK

i{Km, Kp} = _Emémv—m
i{Kmn,L,} =0,
i {L;n, L;} = (m—mn)L,,,,+ %m?’ém,_n ,
where ¢~ := ¢y. Finally, we define
— LY=L, +inaK_,, (5.1c)

where « is an arbitrary constant. The PB algebra between L] takes the well-known form:

+
i {Lﬁb, LZ} = (m— n)L:;Jrn + i—2m35m7_n,
i{L},L,} =0,

i{L,.L,} = (m—n)L, ., + ¢

12m35m7,n, (5.2)

where ¢t := cga?. This result reveals the conformal structure hidden in (4.7).

Clearly, the value of « in ¢* has to be fixed by some additional requirements. Before
going to that, we display here the values of LSE in terms of the canonical energy and angular
momentum for the spacelike warped black hole:

y (12 +3)v 1 2
Ly = S8UE? = e A AR L CE D) I
2 2
. +3)(52 + 3)
Li—rt-Mm= —r )2, 5.3
0" Ee TR (5:3)

These results are in complete agreement with those found in [6].
In order to find out the value of «, one can use our central charges ¢t to calculate the
black hole entropy via Cardy’s formula:

Lict Lic
Se = 2my| 06 + 27 06 .
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A direct calculation leads to

(1?2 +3) 1 m(502 + 3)
=2 R B 2 _ —r_). 4
S mo— e T e = VT B+v?)| + Y™ (ry—r_) (5.4)
On the other hand, the gravitational black hole entropy of TMG, has the form [6, 15]:

__ T 2 _ (1,2 _ \/—2
Sgr = Y™e [(91/ +3)ry — (v 4+ 3)r— —dv/ryr_(v —1—3)} . (5.5)
Comparing S. and Sgy, one finds that S. = Sy, for

2v 20
o= —F— = .
V2+3 GCK

(5.6)

Consequently, the values of the central charges in the Virasoro algebras (5.2) are the same
as those conjectured in [6]:
507 + 3)( 4vl
I Gtk )L A (5.7)
Gv(v? +3) G(v? +3)
In conclusion, our main result is expressed by the formulas (5.2) and (5.7), and it
confirms the hypothesis formulated heuristically in [6], at least at the classical level.

6 Concluding remarks

In this paper, we analyzed asymptotic structure of TMG, in the spacelike stretched
AdS sector.

(1) We introduced spacelike stretched AdS asymptotic conditions and found the form of
the corresponding asymptotic parameters. The commutator algebra of the asymp-
totic transformations is the semi-direct sum of u(1)ky with the Virasoro algebra,
without central charges, which is a natural generalization of the vacuum isometry al-
gebra u(1) & sl(2, R). Asymptotic conditions for the metric recently proposed in [10]
coincide with ours.

(2) With the adopted asymptotic conditions, we constructed the improved canonical gen-
erators and found the expressions for the conserved charges. In particular, we calcu-
lated the energy and angular momentum of the spacelike stretched black hole. We
showed that canonical algebra of the improved generators takes the form of the semi-
direct product of u(1)ky and the Virasoro algebra, with two central charges. Our
algebra has essentially the same form as the one found in [9, 10] by different methods.

(3) In the last step, we used the Sugawara construction in the u(1)kn sector to show that
the asymptotic dynamics of TMGy can be described by the conformal symmetry, real-
ized by two independent Virasoro algebras with different central charges. This result

proves that the hypothesis formulated in [6] is correct, at least at the classical level.
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A Spacelike stretched AdSs3

Here, we describe some basic properties of spacelike warped AdSs solutions [5, 6].

Maximally symmetric solution of GRp for A < 0, the anti-de Sitter space AdSs, is
also a solution of TMG,. It can be represented as a hypersphere embedded in a four-
dimensional flat space My with the metric n = (+,+, —, —). By construction, the isometry
group of AdSs is SO(2,2) ~ SL(2, R) x SL(2, R), and we denote the corresponding Killing
vectors by (&(0),§(1),€(2)) and (5(0),5(1),5(2)), respectively. After introducing a convenient
set of coordinates (7,u, o), analogous to the Euler angles for the 3-sphere, the metric of
AdS3 can be written in the form

EQ
ds? = " [cosh o?dr* — do® — (du + sinh O'dT)2] ,

where {7, u, 0} are in the range (—oo, +00).
The metric of the spacelike warped AdSs is given by:

2 2

4v
25 2 2
213 cosho“dr* — do _y2+3

ds® = (du + sinh odr)?| | (A1)

where w := 412 /(v? + 3) is the warp factor. The isometry group of (A.1) is generated by
four Killing vectors,

§2) = 20y,
_ .
5(1) = 2sin T tanh 00, — 2cos 70, + ﬂau ’
cosh o
3 2
§(2) = —2cosTtanh o0, — 2s8in 70, — LST&“
¢ cosh o
v o (A.2)

which satisfy the commutator algebra u(1) x sl(2, R). For v? > 1, we have w > 1, and the
metric (A.1) describes the spacelike stretched AdSs.

One can show that the spacelike stretched AdSj is locally isometric to the black
hole (2.4), by using the following change of coordinates:

2y/(r —ry)(r —r_)sinh qS]

7 = arctan
2r —ry —r_

2 =2
ly = V4+3 {Qt +/ <l/(7’+ +ro) = rer_ (V2 + 3)) go] — latanh [Wfr coth gb}
v

T —T—

> — asinh [2\/(7" —r4)(r —r_) cosh (b] ’ (A.3)

Ty —T—
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where ( 2 )
B 3+vo)(ry —r_

¢ - 4£ SD )
and (t,r,p) are the usual Schwarzschild-like coordinates. Note that the black hole (2.4) is
obtained from the spacelike stretched AdS3 by the identification ¢ ~ ¢ + 27w. Expressed in
terms of the new coordinates, the Killing vectors (A.2) take the form:

o) = 5=

5(1) _ \/m(g+ +r_ —2r)+2u[r(ry +r_) — 2ror_] sinh 60, .
B+ (rs =)/ (r—ri)(r =)
40(2r —ry —r_)
B+v)(ry —r)/(r—r)(r — 1)
_ rar_(v2+3) —v(ry +ro) 8¢
= —4 L0y —

o G —r) B )
5(0) _ \/m(g+ +r_ —2r)+2ur(ry +r_) — 2ror_] cosh 60 .
B+ (rs =)/ (r—ri)(r =)

) 40(ry +r_ —2r)
—2\/(7’ —7r4)(r —r_)sinh ¢0, —
: B+ 03y —r ) =) —r)
After the identification ¢ ~ ¢ + 27, only ) and 5(2) remain the Killing vectors of the
black hole (2.4).
The asymptotic form of ) and 5(2) is quite simple, while for 5(1) and 5(0) we have:

—2y/(r —74)(r — r_) cosh ¢0, + sinh ¢0,, ,

0, (A.4)

cosh ¢0,, .

L0y

- virg +r_) — /(W2 +3)rpr_ .
&”__4[ BF e —r) e

8¢
G+ —1)

—(2cosh ¢r + O)0, + [ sinh ¢ + (92} Oy

_ viry +r_) —/(v? 4+ 3)rpr_
o) = —4[ G G +)y2)(r+( _T_)) = cosh ¢ + O | €0y,
. 8¢ cosh ¢
—(2 h .
(2rsinh ¢ + Op)0, + [(3+u2)(r+ ) +02} Oy

These expressions are needed for our discussion of the asymptotic conditions in section 3.

B The curvature, Ricci and Cotton tensors

In this appendix, we present some technical details related to the form of the spacelike
warped black hole solution in the first order formalism.
Using the connection (2.5b), we find that the curvature R; is given by

Ry = (8'B+207) ' — (B +7° + ) 10",
Ry = —(+ B,
By = — (/B +a® - 36°) 0°' — (5B +207) b'Y, (B.1a)
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or equivalently:

1
Ry = —%(VQ — )NEN b — = (v +3(v* — 1)N?) b'b”,

/2
2
Y20
Ry = _6_26 b,
1
Ry = —55 (3 —2v% =3 — 1)N?) b + 5’ (V2 — 1)NKN,b'b?, (B.1b)
Then, the components of the Ricci tensor (Ric),,, = —ekl . Rin are found to be:
(Ric)gy = &/ B+ a* + ay — 23, (Ric)y; =0,
(Ric),, = —&/'B—+'B —a® — 4%+ 23, (Ric)y, =0,
(Ric)y, = —/B — % — ay — 202, (Ric)y = —(#B+267),  (B.2a)
or equivalently:
(Ric)y 7 (3— v —3? — 1)N2) , (Ric)y; =0
1
(Ric)yy _£_2(3 - %), (Ric)i =0
, 1 3
(Ric)y, = — 55 (2v° +3(* —1)N?) | (Ric)yy = 73 —(@* —=1)NKN,. (B.2b)

Finally, the Cotton 2-form reads:

9v 3v
Co =75 (v — 1)NK N, — = (V> = 1)(3N? — 1)b'b?,
3v
Cy = 53( —1)p%°,
3v v
Cr =3 (> —1)(2+ 3N — 6—3( — 1)NEKNyb'b? . (B.3)

C Improved asymptotic conditions

Our asymptotic conditions (3.2) are chosen so that all higher-order terms are left completely
arbitrary. However, this feature can be improved by noting that expressions that vanish
on shell should have an arbitrarily fast asymptotic decrease. By applying this principle to
the secondary constraints, we obtain the following relations between higher-order terms:

900 = Oy, 0% = Oy,
0B = Oy, 0022 = O | A2 = Oy, (C.1)
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and also

%322 Lty V312 _212@2 +3) (_%311 n Q11> r2 =0, (C.2a)
—V++3 <Qoz + %A()z)

N V312 —|—2?;)(y2 -1) <_27’/B11 I Qll) 2 =0, (C.2b)
5 _25”2 B+ 0% + 2—2/122

e _212(”2 +3) (3(2u;+ Dt _al, + 2_2 A11> 22— 0., (C20)
%BQQ N (41/26:— 3)922 n 2_’/a/122

+\/3(y2 _216)(1/2 +3) <%Bl1 n %QH B %/91) P2 =0, (C.2d)
L (e, L)

E +2?;)(1/2 —1) (%1 N /;_;1> 20, (C2e)

From (C.2b) and (C.2e¢), we obtain

v 2y2+390 N V32 +3)(¥?2 - 1) (

2v 3
— —Bh+ =AY )rP=0,. 2f
V23 202 2 20 1+ 2a 1> =0 (C.21)

l
By eliminating B';, Q' and A'; from the remaining equations in (C.2), one finds
the relation

14

2vv2 43
f TQOQ - 01 B (C3)

4 1
B* + 5922 + 5/122 +

that ensures finiteness of the angular momentum.

D Hamiltonian and constraints

In this appendix, we present a brief overview of the canonical structure of TMG, [11].
Starting with the Lagrangian variables (b* s w? s pY ,) and the corresponding canonical
momenta (m;*, II;#, p;#), we find the following primary constraints:

¢" =m" ~0, ¢ = m" — " Ng =0,
3,0 :=11,"~0, ®;% = 11" — ac®?(2big + p~ ' wig) = 0.
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The canonical Hamiltonian has the form (up to a 3-divergence):
He = bloH; + w'ok; + NoT,
H; = —g0aB (aRmﬁ — Asijkbjabkg + va)\w) ,

]CZ- — —500{6 (aﬂaﬁ —+ auilR@'aﬁ + Eijkbja)\kﬁ) )

1
7; = _iaoaﬁﬂaﬁ .

After constructing the total Hamiltonian Hyp, the consistency requirements on the

primary constraints produce the secondary constraints,
H; ~0, K;=~0, T, ~0, (D.2)

and yield the additional relations which determine the multipliers u’,,v%, and w',. The
modified total Hamiltonian takes the form (up to a 3-divergence):

Hip = bloH; + w'oK; +>\OT+U07Tz + 0011 + w'op®

H; = H; — Vi — _5ijk)\]6q) Mt e (246 5+ X g) pP
K = K; — amkb]gékﬁ V@i — i) gp*?
T =T — Loeijbl 08 — Vapi® + pegjuld sp

2a

The consistency conditions of the secondary constraints lead to three independent
tertiary constraints,

905 = )\05 - )\50 ~ 0, (D.3a)
Haﬁ = )\a,ﬁ — )\ﬁa ~ 0, (D.3b)

while the consistency of 6,3 yields a new, quartic constraint:
VUV =344+pA~0. (D.4)

Further consistency requirements determine the multipliers w’y’ := w’g — uF o, whereby
the consistency procedure is completed. The final form of the total Hamiltonian reads:

7:(T == HT + uioﬂ'iol + UiQHZ‘O s (D.5)
Hr = boH; + w'okKi + NoT; + wjp™ + wiop™

0r

where m;% := 1,9 + X\;*pi?, and the multipliers with an overbar are determined.

As far as the classification of constraints is concerned, we find that =%, II,° and

Hi = Hi + \"Th + hip(vp)‘jk)bkopjo’
k:i =K — 5ijk()\j0pk0 - bjO)\knpnO) ) (D.6)

are first class, while all the others are second class.
The canonical generator of gauge transformations has the form (4.1).
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